Beyond Low Rank: A Data-Adaptive Tensor Completion Method
نویسندگان
چکیده
Low rank tensor representation underpins much of recent progress in tensor completion. In real applications, however, this approach is confronted with two challenging problems, namely (1) tensor rank determination; (2) handling real tensor data which only approximately fulfils the low-rank requirement. To address these two issues, we develop a data-adaptive tensor completion model which explicitly represents both the low-rank and non-low-rank structures in a latent tensor. Representing the non-low-rank structure separately from the low-rank one allows priors which capture the important distinctions between the two, thus enabling more accurate modelling, and ultimately, completion. Through defining a new tensor rank, we develop a sparsity induced prior for the low-rank structure, with which the tensor rank can be automatically determined. The prior for the non-low-rank structure is established based on a mixture of Gaussians which is shown to be flexible enough, and powerful enough, to inform the completion process for a variety of real tensor data. With these two priors, we develop a Bayesian minimum mean squared error estimate (MMSE) framework for inference which provides the posterior mean of missing entries as well as their uncertainty. Compared with the state-of-the-art methods in various applications, the proposed model produces more accurate completion results.
منابع مشابه
Parallel matrix factorization for low-rank tensor completion
Higher-order low-rank tensors naturally arise in many applications including hyperspectral data recovery, video inpainting, seismic data reconstruction, and so on. We propose a new model to recover a low-rank tensor by simultaneously performing low-rank matrix factorizations to the all-mode matricizations of the underlying tensor. An alternating minimization algorithm is applied to solve the mo...
متن کاملLow-Rank Tensor Completion by Truncated Nuclear Norm Regularization
Currently, low-rank tensor completion has gained cumulative attention in recovering incomplete visual data whose partial elements are missing. By taking a color image or video as a three-dimensional (3D) tensor, previous studies have suggested several definitions of tensor nuclear norm. However, they have limitations and may not properly approximate the real rank of a tensor. Besides, they do n...
متن کاملRiemannian Optimization for High-Dimensional Tensor Completion
Tensor completion aims to reconstruct a high-dimensional data set with a large fraction of missing entries. The assumption of low-rank structure in the underlying original data allows us to cast the completion problem into an optimization problem restricted to the manifold of fixed-rank tensors. Elements of this smooth embedded submanifold can be efficiently represented in the tensor train (TT)...
متن کاملTensor Completion by Alternating Minimization under the Tensor Train (TT) Model
Using the matrix product state (MPS) representation of tensor train decompositions, in this paper we propose a tensor completion algorithm which alternates over the matrices (tensors) in the MPS representation. This development is motivated in part by the success of matrix completion algorithms which alternate over the (low-rank) factors. We comment on the computational complexity of the propos...
متن کاملLow-tubal-rank Tensor Completion using Alternating Minimization
The low-tubal-rank tensor model has been recently proposed for real-world multidimensional data. In this paper, we study the low-tubal-rank tensor completion problem, i.e., to recover a third-order tensor by observing a subset of its elements selected uniformly at random. We propose a fast iterative algorithm, called Tubal-AltMin, that is inspired by a similar approach for low-rank matrix compl...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- CoRR
دوره abs/1708.01008 شماره
صفحات -
تاریخ انتشار 2017